HY-OPTIMA™5000系列氢

传感器

操作手册

27215Turnberry Lane, Suite A Valencia, CA 91355, US 电话:(661) 775-9575/传真:(661) 775-9515 邮箱: sales @ h2scan.com www.h2scan.com

重要通知

在安装或使用本机之前,请详细阅读并理解本操作手册。 如果以H2scan未指定的方式使用本设备,则会影响本设备提供的保修服务。

责任限制-在任何情况下,卖方不应对任何附带的、后果性的、特殊的、惩罚性的或其他损害负责,包括但不限于业务或利润损失、促销或制造费用、声誉损害或客户损失,基于任何所谓的疏忽,因使用、误用、购买、出售或拥有其货物或履行本合同,只要这种责任将卖方的义务超出买方就该索赔所依据的项目向卖方支付的价格。卖方建议买方在部署之前对所有硬件进行可接受的测试,并按照卖方的说明指南中所述进行维护。在任何情况下,本协议项下提供的设备不得以其作为设施、设备和人员安全的唯一保护系统的方式使用;该设备旨在与其他适当的保护系统结合使用。

有限保修

H2scan有限保修:每台氢气仪器 ("产品") 将符合本手册中规定的所有主要操作特征,并且在自该产品发货之日起十二 (12) 个月内,无任何严重影响该产品性能的缺陷。

必须提供缺陷通知: 如果您认为有缺陷的产品,您必须在收到该产品后十 (10) 天内以书面形式通知H2scan您对任何此类缺陷的索赔。

将产品退回H2scan进行维修,更换或信用:如果H2scan发现产品有缺陷,则H2scan在本保修项下的唯一义务是 (i) 维修产品,(ii) 更换产品。或 (iii) 为该产品的购买价格开具信用证,该补救措施将由H2scan根据具体情况确定。

失效保修: H2scan的12个月有限保修对以下任何一项无效:

- 单元打开,制造密封破裂。
- 在客户所在地进行的或由除 H2scan的工厂培训了技术人员。
- 未经H2scan书面同意而被篡改、误用、忽视、处理不当、调整不当或以任何方式修改的设备或部件。
- 由于运输,误用,事故,处理不当,疏忽或电源问题而损坏的设备或零件。
- 在保修期内进行的维修工作不会将保修期延长到原始期限之后。
- 系统在不正确或不适当的环境中运行。
- 不符合系统指南或操作员未能遵循手册的用法说明。

保修限制:以上是有限保修,因为它是H2SCAN唯一的保修。H2SCAN不作任何其他明示或暗示的保证,并明确排除针对特定目的的适销性和适用性的所有保证。您在本协议项下的唯一补救措施是修理或更换产品或此类产品购买价格的信用,具体补救措施将由H2SCAN根据具体情况确定。H2SCAN对其在本协议下的相应的、示范的或附带的损害的义务不承担任何责任,即使它已被告知此类损害的可能性。声明的明示保证代替H2SCAN对因产品的交付,使用或性能而引起或与之相关的损坏的所有责任或义务。

90000181 R0 Page 2 of 41

内容

1			
2	功能		5
	2.1	传感器	5
	2.2	机械传感器	
	2.3	物理屏障	
	2.4	电气功能	
3	规格		7
	3.1	认证	9
	3.2	标准	9
4	电气	接口	10
	4.1	连接器	
	4.2	连线图	
	4.3	线缆	
	4.4	电源	
	4.5	RS485	
5	安装	电气接口	12
	5.1	处理注意事项	12
	5.2	机械连接	12
	5.3	电气连接	
	5.4	可选配件	13
	5.4.1	接地接线片	
	5.4.2	安装支架	
	5.4.3	导管适配器	
	5.4.4	5902HY-OPTIMA™ 模拟输出模块 自定义传感器电缆长度	
	5.4.5		
6			
	6.1	启动	
	6.2	监控	
	6.3	关机	
	6.4	错误/异常处理	
7		bus	
	7.1	通信设置	
	7.2	通讯协议	
	7.2.1	异常响应	
	7.2.2	Modbus 命令寄存器定义	
	7.2.3	氢气测量	
	7.2.4	温度测量	22

7.2.5	ASCII字符串	22
7.2.6	日期寄存器格式	23
7.2.7	状态和错误信息	
7.2.8	设置单元ID	
7.2.9	停止位选择	
7.2.10	·····································	25
7.2.11	实时时钟	25
7.2.12		
8 操作	· F原则	27
O 1米年	F 尽则	21
8.1	压力影响	27
8.2	压力标准化规格	28
8.3	传感器监测模式	29
8.3.1	H ₂测量	29
8.3.2	H ₂检测	30
8.4	昼夜效应	30
8.5	响应时间	31
9 2点	校准法	34
9.1	校准气体	34
9.2	背景气体	
9.3	现场校准程序	
9.4	中止字段校准	-
9.5	明场校准	
9.6	校准状态和错误	
10 附录	<u>.</u>	38
10.1	固件升级	
10.2	常规故障排除	40

1 简介

The HY-OPTIMA™5000系列氢传感器使用了H2scan的专利固态,非消耗性,氢特异性传感元件测量混合气体中的氢气浓度。H2scan的专利技术提供可靠,实时,直接,只针对氢气的测量,而不会对常见的工业气体 (例如碳氢化合物,二氧化碳,惰性气体以及一定浓度的一氧化碳和硫化氢) 产生交叉敏感性。稳固的设计随着时间的推移保持精度,无需定期校准,从而降低了运行成本。

该产品系列非常适合实时在线过程应用,以提高效率/产量,并在石化加工和氢能产业应用 (例如 电解槽,燃料电池以及氢分配,混合和存储)中提供安全有效的操作。

基于H2scan的第5代电子平台,HY-OPTIMA™5000系列氢传感器通过数字接口报告校准氢气读数。H2scan的固态氢传感器和专利算法结合在HY-OPTIMA中™5000系列氢气传感器提供连续,免维护,可靠,准确的氢气测量。

The HY-OPTIMA™5000系列氢传感器有一个单一的电连接提供直流电源和2线,RS-485通信使用 Modbus RTU协议。

本文档已更新,使用的是最新的固件版本3:5:A。

2 特征

2.1 传感器

The HY-OPTIMA™5000系列氢传感器氢测量基于H2scan的最先进的固态传感器。对于遵循本手册中列出的准则的正常操作下的典型工业气流,可以预期测量算法在设备的寿命内保持所述的精度。

- 传感器测量并报告氢作为其分压,因此可以测量氢作为各种气体混合物的成分。
- 不需要定期校准。
- 传感器不需要维护。
- 传感元件具有较长的寿命,并且在操作过程中不会被消耗或劣化。
- 没有运动部件磨损。
- 没有背景气体、载气或操作所需的任何其他消耗品。

2.2 机械

The HY-OPTIMA™5000系列氢传感器具有坚固耐用的防水机械装配设计,适用于工业应用。提供用于将传感器附接到气流的3/4"-14 NPT配件。The HY-OPTIMA™5000系列氢传感器是IP68和海水腐蚀额定海洋应用。(超过C5M要求)

总体尺寸如图1所示。

90000181 R0 Page 5 of 41

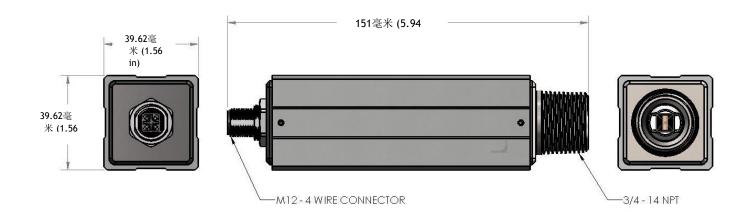


图1: HY-OPTIMA™5000系列氢传感器尺寸

2.3 物理屏障

HY-OPTIMA™5000系列氢传感器氢传感元件和电路板之间存在物理屏障。该屏障包括用于电连接的玻璃到金属馈通和垫圈,以完成氢气的密封。

2.4 电气特征

The HY-OPTIMA™5000系列氢传感器具有用于电源和通信的单个4针M12连接器。

- 9至48伏, 10瓦的DC电源输入 (建议使用通常的24 VDC或48 VDC电源)
- 用于Modbus RTU通信的2线RS485

90000181 R0 Page 6 of 41

3 规格

传感器性能规格是绝对的,并假定干燥工艺流,环境温度为25°C,1大气压绝对压力,并且除了所用校准气体中的任何误差之外。准确性和可重复性定义为±列出的值。其他操作压力请参见8.2 压力标准化规格,因为它会影响下表中的规格。

虽然传感器可以在不含氢的气体中操作,但是测量性能规范仅在传感器暴露于高于下面所示的检测下限的含氢的气体中时才有效。

表1:产品选择

模型	H ₂范	這围	检测下限 (LDL)	CO	H ₂ S	响应时间 T ₉₀ (秒) *	准确度	重复性
	低	髙	, , ,	限制	限制	1 70 (12)		
5031	0%	10%	0.03%	100 ppm	20 ppm	<90	见表2	请参见表2。
5032	0%	5%	0.4%	0	0	<60	0.3%	0.3%
5033	0%	100%	0.5%	100 ppm	1000 ppm	<60	见表3	请参见表3。
5034	0%	100%	0.5%	20%	3%	<90	见表3	请参见表3。

^{*}有关响应时间的更完整讨论,请参见8.5响应时间

表2: 模型5031精度和可重复性

H₂范围	精度 (绝对误差)	重复性 (绝对误差)
LDL - 0.5%	0.05%	0.05%
1% - 2%	0.10%	0.10%
2% - 5%	0.15%	0.15%
5% - 10%	0.20%	0.20%

表3: 模型5033/5034精度和可重复性

H ₂范围	精度 (绝对误差)	重复性 (绝对误差)
LDL - 10%	0.4%	0.2%
10% - 30%	0.7%	0.3%
30% - 70%	1.0%	0.4%
70% - 100%	1.2%	0.5%

90000181 R0 Page 7 of 41

表4: 绝对最大运行条件

衣4: 绝对取入运行条件				
		值		
参数	最小值	标称	最大值	单位
环境-气流*				
工作温度	-40		60	°C
压力†(绝对)	0.1 [†]	1	10 [†]	ATM abs
气体流量 (1/4 "管)	0.1	1	10	slpm
工作湿度	工作湿度 <95% RH (非冷凝)			
环境-环境				
工作温度	-40		70	°C
储存温度	-40		105	°C
入口保护	IP68; 25英尺水14天 (IEC 60529)			
湿度	0至100% RH,冷凝			
耐腐蚀性	C5M级船用; 盐水冷凝 (IEC 60068-2-11 & DIN EN ISO 12944)			
机械				
3轴正弦,宽带和随机 (IEC 60068-2-6表C.2,IEC 60068-2-64 第A.2段,类别编号2、IEC 61373: 2010 Cat 1B第9节)				
休克	休克 30g,休克持续时间18ms (IEC 60068-2-27)			2-27)
重量	0.85磅。(387克)			
电气				
电压输入	8.1	24	52.8	VDC
功耗			10	W

90000181 R0 Page 8 of 41

^{*}具体的产品型号可能有不同的限制。

[†]在高于或低于1 atm abs的压力下运行。会影响测量精度。参见8.1压力影响

3.1 认证

 ϵ

FC.

IP68

3.2 标准

- IEC 60068-2 & EN 50155第13.4.4节
- IEC 60068-2-11 & DIN EN ISO 12944
- IEC 60529
- IEC 60068-2-6表C.2
- IEC 60068-2-64第A.2段,类别号2
- IEC 60068-2-27
- FCC第15部分
- EN 55011 A类1组
- IEC 61000-4-2、61000-4-3、61000-4-6和61000-4-8
- ANSI/UL/IEC/EN 61010-1
- IEC 61326-1

90000181 R0 Page 9 of 41

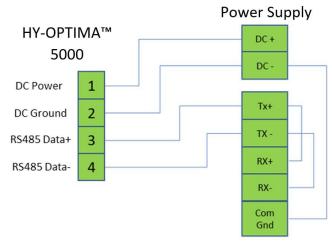
4 电气接口

HY-OPTIMA的所有电气连接™5000系列氢传感器通过单个4针M12连接器提供。

4.1 连接器

键(缺口)位置和引脚编号如表5所示。

表5: HY-OPTIMA™5000系列氢传感器引脚输出


77.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
150	销	信号名称	电线颜色		
2	1	直流电源	棕色		
(3	2	直流接地	白色		
	3	RS485数据 +	蓝色		
	4	RS485数据-	黑色		

注意: 此视图正在查看HY-OPTIMA上的连接器™5000系列氢传感器。

4.2 接线图

图2显示了接线图。

HY-OPTIMA™5000

MODBUS Master

图2: 与Modbus RTU Master的连接

4.3 电缆

大多数现场应用都需要合适的额定电缆组件。标准包括5m电缆,所有其他长度均为定制可订购选项。

电缆建议是:

- 4针M12母模制连接器
- IP68额定连接器
- 4/18 AWG电线
- 建议使用屏蔽电缆 (仅一端接地)

注意: H2scan不负责使用不适合环境的电缆和连接器。

90000181 R0 Page 10 of 41

4.4 电源

The HY-OPTIMA™5000系列氢传感器包含一个内部隔离的电压调节器,用于在恶劣的电气条件下运行。直流接地线与金属外壳电绝缘。The HY-OPTIMA™5000系列氢传感器外壳通过机械连接连接到接地。

使用符合以下规格的工业级固定输出电源:

• 直流电压输出

• 输出电压: 12、15、24、30、36或48 VDC标称 (8.55至50.4 VDC)

• 输出功率: 最小10瓦

注意: 建议使用24 VDC或48 VDC电源。

H2scan提供24 VDC电源作为可订购的附件。

4.5RS485

RS485输入在HY-OPTIMA内部电流隔离™5000系列氢传感器,可提高恶劣电气环境中的抗噪性。

The HY-OPTIMA™5000系列氢传感器不包括用于数据线的偏置电阻器,这些偏置电阻器可能需要在电缆的SCADA端添加。在HY-OPTIMA™5000系列氢传感器安装了位于Data和Data-之间的120欧姆终端电阻。

以下通信设置用于RS485,2线,半双工连接:

波特率:

9,600
14,400
19,200 (出厂默认值)
38,400
57,600
115,200

数据位:8

停止位: 1或2 (默认为2)

奇偶校验:无流量控制:无

90000181 R0 Page 11 of 41

5 安装

5.1 处理注意事项

必须遵循以下预防措施,以确保在处理过程中不会损坏传感器组件:

- 确保没有任何东西与设备的传感器端接触。
- 保护盖应保持原位,直到安装时为止。
- 拧紧时,将扳手放在最靠近螺纹端的金属外壳上。The HY-OPTIMA™5000系列氢传感器设计用于处理整个传感器组件外壳中的扭矩。
- 使用大约50英尺磅的3英寸NPT配件的标准扭矩。不要过度拧紧。

5.2 机械连接

将传感器连接到 ¾ "-14 NPT配件。为了适应内径较小的样品流,如 "NPT",一个 "-14 NPT三 通接头可与" 外螺纹NPT x "内螺纹NPT适配器衬套一起使用。建议将传感器安装在垂直位置,以防止冷凝流体在传感器腔内的任何潜在积聚。请勿安装传感器,传感器腔以任何角度向上指向图3。

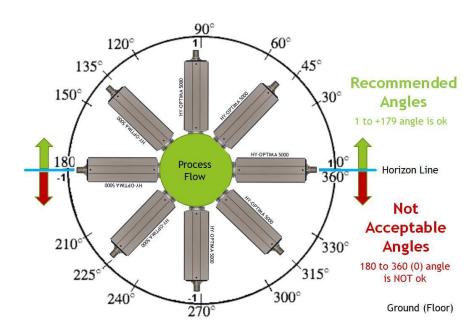


图3: 可接受和不可接受的安装方向

警告: 向上安装传感器会导致冷凝液体积聚在传感器腔内,并会导致传感器操作和报告问题,使有限保修失效。

90000181 R0 Page 12 of 41

5.3 电气连接

给设备通电之前:

- 在HY-OPTIMA™5000系列氢传感器之间安装电缆和电源/通信设备
- 通信接地必须连接到DC接地
- 将电缆连接到电源/通信设备
- 将电缆连接到HY-OPTIMA™5000系列氢传感器

注意: HY-OPTIMA连接器™5000系列氢传感器必须完全拧紧,以确保IP68等级。

打开电源并检查Modbus通信。默认通信设置为:

- RS485, 半双工, 19200波特, 8数据位, 2停止位, 无奇偶校验
- 默认Modbus标识为1

5.4 可选配件

H2scan为HY-OPTIMA™5000系列氢传感器提供配件,协助氢传感器的集成和安装。更多配件信息,请查看h2scan.com网站和sales @ h2scan.com邮箱。

5.4.1 接地接线片

接地片为HY-OPTIMA™5000系列氢传感器提供了安全的接地连接。

5.4.2 安装支架

安装支架提供了一种连接HY-OPTIMA™5000系列氢传感器到一个表面的方法。

5.4.3 导管适配器

导管适配器可以通过M12连接器固定到氢传感器的端部,从而通过1/2 "NPT"导管连接为传感器电缆提供馈通。

5.4.4 **5902HY-OPTIMA™**模拟输出模块

模拟输出模块转换来自HY-OPTIMA™5000系列氡气传感器的数字Modbus信号成4-20mA模拟信号。

5.4.5 定制传感器电缆长度

每根HY-OPTIMA™5000系列氢传感器都包括一根标准的5 m电缆。如果需要更长的长度,可以从H2scan订购30 m的定制电缆。

90000181 R0 Page 13 of 41

6 操作

注意: 如果在除1 atm绝对压力之外的压力下操作,则需要通过执行2点场校准或通过将氢读数除以atm绝对压力中的已知压力来补偿氢读数。

6.1 启动

在通过连接电缆并打开电源使气体流过传感器之前,先打开分析仪的电源。传感器将执行启动程序,并在1分钟后开始报告氢气。在此期间,分析器将:

- 执行上电系统自测试一下
- 从非易失性存储器恢复配置设置。

当第一有效氢测量可用时,Modbus状态寄存器**111**位**15**将指示**就绪**。启动序列完成后,Modbus寄存器中将提供测量数据。

如果分析仪断电超过一个月,则可能需要设置实时时钟。参见7.2.11实时时钟。

如果报告错误,请关闭传感器的电源; 再次恢复电源之前,请仔细检查电气连接和电源电压。如果错误情况仍然存在,请通过technicalsupport @ H2scan.com联系h2scan客户服务寻求帮助。

6.2 监控

在正常运行期间,HY-OPTIMA™5000系列氢传感器测量值应定期通过RS-485接口轮询,以获得测量读数。读数之间的时间可以从1秒到几个小时或几天,这取决于用户的要求。每个读数应包括以下Modbus保持寄存器。

- **状态寄存器** (111位15和12) -位15指示氢测量可用。位12表示存在错误。
- 错误状态寄存器 (112, 113)-指示检测到哪个错误。(当寄存器111位12为高时,这些寄存器是活动的)
- **氢寄存器 (0, 1)**-提供氢ppm值。编程注意: 必须读取高字 (0) 才能使低字 (1) 值可用。

6.3 关机

建议使用以下受控关闭程序:

- 用氢气浓度小于5% H_{2的气体}或用100% N_{2的气体吹扫系统}5分钟。 ○**注意:** 对于5032模型,可以使用无氢气的气体,例如空气或惰性气体,例如氮气, 氦气或氦气。
- 关闭所有流向分析仪的气体。
- 关闭分析仪电源。

90000181 R0 Page 14 of 41

6.4 错误/异常处理

The HY-OPTIMA™5000系列氢传感器设计用于连续运行,将自动从由于功率不足,过多的电噪声或内部PCB温度过高而引起的间歇性问题中恢复。

如果传感器元件损坏且无法操作,则HY-OPTIMA™5000系列氢传感器将关闭测量系统,并继续响应Modbus进行错误报告。该错误将通过寄存器111位12报告,然后在寄存器112 113中指定细节。这种类型的错误通常表示只能在H2scan上修复的硬件故障。使设备通电以尝试恢复。如果错误仍然存在,请通过technicalsupport @ H2scan.com联系h2scan进行维修。

90000181 R0 Page 15 of 41

7 Modbus

The HY-OPTIMA™5000系列传感器使用Modbus RTU与外部设备通信。Modbus RTU是许多产品支持的流行工业界面。

7.1 通信设置

Modbus协议通过RS485进行通信,并支持RTU数据包。The HY-OPTIMA™5000系列氢传感器默认 Modbus ID为1。可以通过写入保持寄存器150来改变Modbus ID。

7.2 协议

下表包括Modbus数据包,值,寄存器和寄存器定义的列表。

传感器响应Modbus命令的最长时间为10秒。

因此,主设备的超时应设置为10,000毫秒或更大。

表6:	Modbus读取请求	で数据包
	-144 (77.7)	44.3

A 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
字节	Modbus参数	范围	含义	
1	从属地址	1 - 247	单位ID地址	
2	函数代码	03	读取保持寄存器	
3	起始地址Hi	0x00 - 0xFF	持有寄存器Hi字节	
4	起始地址Lo	0x00 - 0xFF	持有寄存器Lo字节	
5	寄存器数Hi	0	受Modbus规格V1.1b限制	
6	寄存器数量Lo	1 - 125	16位寄存器数量Lo字节	
7	CRC Lo	0x00 - 0xFF	CRC低字节	
8	CRC Hi	0x00 - 0xFF	CRC高字节	

表7: Modbus读取响应数据包

字节	Modbus 参数	范围	含义
1	从属地址	1 - 247	单位ID地址
2	函数代码	03	返回保持寄存器
3	字节计数	7 - 255	返回的数据字节数 = N
4	第一个数据值Hi	0x00 - 0xFF	
5	第一个数据值Lo	0x00 - 0xFF	
6	第二个数据值Hi	0x00 - 0xFF	
7	第二个数据值Lo	0x00 - 0xFF	
…	…		
…	…		
2N + 4	CRC Lo	0x00 - 0xFF	CRC低字节
2N + 5	CRC Hi	0x00 - 0xFF	CRC高字节

90000181 R0 Page 16 of 41

N是根据请求的寄存器数返回的字节数。如果请求了N个寄存器,则返回2N + 5个字节。

90000181 R0 Page 17 of 41

衣o. MUUDUS与人间水致情况	表8:	Modbus写入	请求数据包
-------------------	-----	----------	-------

	\$500 mode at \$7,500 mg						
字节	Modbus参数	范围	含义				
1	从属地址	1 - 247	单位ID地址				
2	函数代码	06	写入保持寄存器				
3	注册地址Hi	0x00 - 0xFF	单位寄存器地址Hi字节				
4	注册地址Lo	0x00 - 0xFF	单位寄存器地址 Lo 字节				
5	数据值Hi字节	0x00 - 0xFF					
6	数据值Lo字节	0x00 - 0xFF					
7	CRC Lo	0x00 - 0xFF	CRC低字节				
8	CRC Hi	0x00 - 0xFF	CRC高字节				

表9: Modbus写入响应包

字节	Modbus参数	范围	含义
1	从属地址	1 - 247	单位ID地址
2	函数代码	06	
3	寄存器地址Hi字节	0x00 - 0xFF	单位寄存器地址Hi字节
4	寄存器地址Lo字节	0x00 - 0xFF	单位寄存器地址Lo字节
5	数据值Hi字节	0x00 - 0xFF	
6	数据值Lo字节	0x00 - 0xFF	
7	CRC Lo	0x00 - 0xFF	CRC低字节
8	CRC Hi	0x00 - 0xFF	CRC高字节

7.2.1 异常响应

在由于通信错误而导致的正常通信查询和响应中,主设备向从设备发送查询。接收到查询后,从设备处理请求并向主设备返回响应。两个设备之间的异常通信会产生四个可能事件之一:

- 1. 如果从设备由于通信错误而未接收到查询,则从设备不会返回任何响应,并且主设备最终将处理该查询的超时条件。
- 2. 如果从设备接收到查询但检测到通信错误 (UART或CRC),则从设备不会返回任何响应, 并且主设备最终将处理查询的超时条件。
- 3. 如果从机接收到的查询没有通信错误,并且花费的时间比主机的超时设置长,则从从机不会返回任何响应。主设备最终会处理查询的超时条件。为了防止这种情况,必须将主超时设置得长于从机的最大响应时间 (10,000毫秒)。
- 4. 如果从机接收到的查询没有通信错误,但由于读取或写入不存在的从机命令寄存器而无 法处理,则从机返回一个异常响应消息,通知主错误。

90000181 R0 Page 18 of 41

异常响应消息有两个字段,将其与正常响应区分开来。第一个是函数代码-字节2。此代码将将高阶位设置为1 (例如,读取异常为0x83,写入异常为0x86)。第二个区分字段是异常代码-字节3。此外,总的异常响应长度为5个字节,而不是正常的消息长度。

表10: 异常响应数据包

字节	Modbus参数	范围	含义
1	从属地址	1 - 247	
2	函数代码	0x83或0x86	读或写
3	异常代码	见下表	
4	CRC高	0x00 - 0xFF	
5	CRC低	0x00 - 0xFF	

表11: 异常响应代码

		W 110 M 110 Mayor 1 Mea
代码	名称	描述
1	非法功能代码	查询中接收到的函数代码不是从属程序的允许操作。这可能是因为功能代码仅适用于较新的设备,并且未在所选单元中实现。它还可能表明从机处于错误的状态来处理此请求 类型,例如,它没有配置,正在被要求返回寄存器值。
2	非法数据地址	查询中接收到的数据地址不是从站的允许地址。更具体地说,参考编号和传送长度的组合是无效的。对于具有100寄存器的控制器,PDU将第一个寄存器寻址为0,将最后一个寄存器寻址为99。如果提交的请求的起始寄存器地址为96,寄存器数量为4,则该请求将在寄存器96、97、98、99上成功运行(至少按地址)。如果提交的请求的起始寄存器地址为96,寄存器数量为5,则该请求将失败,异常代码为0x02"非法数据地址",因为它试图对寄存器96、97、98、99和100进行操作,并且没有寄存器地址100。
3	非法数据价值	查询数据字段中包含的值不是slave的允许值。这表明复杂请求的其余部分的结构存在故障,例如隐含长度不正确。具体而言,这并不意味着提交用于存储在寄存器中的数据项具有超出应用程序期望的值,因为MODBUS协议不知道其重要性
4	从设备 失效	从机尝试执行请求的操作时发生了不可恢复的错误。

90000181 R0 Page 19 of 41

7.2.2 Modbus命令寄存器定义

HY-OPTIMA的命令寄存器定义™表12中确定了5000系列氢传感器。

注意: 读取包含32位或64位整数的寄存器时,用户必须先读取高阶字,然后读取低阶字。读取高阶字会导致低阶字保存在临时位置,以便下一次读取寄存器。然后,固件从临时位置自动读取第二寄存器。同样地,在写入的情况下,高值被存储,直到第二个值被接收,此时,两个值都被写入仪器。

表12: 命令寄存器位置

注册	参数	函数	数据类型	数据范围	访问		
	测量						
0	氢气,ppm H ₂	高字	32位二进制	0절120,000,000	R		
1	注意: 要将ppm转换为 %,请将 ppm读数除以10,000	低字	数	0到20,000,000	K		
2-6		预留以备将	来使用				
,		x100标度; 100偏移 (T = V/100-100)	16 位二进制 数	-100至 + 200	R		
8-30	预留以备将来使用						

90000181 R0 Page 20 of 41

注册	参数		数据类型	数据范围	访问			
	信息							
31-40	型号		ASCII字符串		R			
41-50	产品序列号		ASCII字符串		R			
51-60	传感器序列号		ASCII字符串		R			
61-70	传感器板序列 号		ASCII字符串		R			
71-80		预留以备料	9来使用					
81	制造日期	高字节: 月低字节: 日	32位二进制		R			
82		年	值					
83	工厂校准日期	高字节: 月低字节: 日	32位二进制		R			
84		年	值					
85-86		预留以备料	9来使用					
87	现场校准日期	高字节: 月低字节: 日	32位二进制		R			
88		年	值					
89-98	固件修订		ASCII字符串		R			
99-110		预留以备料	7来使用					
		状态/错误信息	<u> </u>					
111	状态	参见第7.2.3节	16 位二进制 标志	表 13: 单位状 态	R			
112	错误状态	参考7.2.7.2节高字	32位二进制	表14: 错误状态	R			
113		低字	标志					
114-120		预留以备料	好来使用					

90000181 R0 Page 21 of 41

注册	参数	函数	数据类型	数据范围	访问	
121-125	预留以备将来使用					
126	校准气体 1 , ₂ ppm 高字		32位二进制	0.7:14 000 000	D ////	
127	H 注: 要将 % 转换为ppm,请将 % 值乘以10,000	低字	数	0到1,000,000	R/W	
128	校准完成/日期	高字节:月低字节: 日	32位二进制		R/W	
129		年	值			
130	校准气体2, 2 ppm	高字	32位二进制	0절년 000 000	D /\\/	
131	H 注: 要将 % 转换为ppm,请将 % 值乘以10,000	低字	数	0到1,000,000	R/W	
132	现场Cal启动命 令	气体暴露持续时间 (分钟)	16 位二进制 数	60至1440	W	
133	现场校准中止命 中止字段Cal或清除数据 令		8位二进制数	1: 中止 2: 清除	W	
134	现场呼叫获取状 态命令	高字节:错误代码低字 节:状态	16 位二进制 数	表 22 和 表 23	R	
135	气体启动命令	气体1或2启动	8位二进制数	1: 气体1 2: 气体2	W	
		配置设置				
136-149		预留以备将	来使用			
150	设置单位ID		8位二进制数	1至247	R/W	
151-158		预留以备将	来使用			
159	停止位选择		16 位二进制 数	1 (停止位 = 1) 2 (停止位 = 2)	R/W	
160 波特率		8位二进制数	1 = 9600 2 = 14400 3 = 19200 4 = 38400 5 = 57600 6 = 115200	R/W		
161-174		预留以备将	来使用			

90000181 R0 Page 22 of 41

注册	参数 函数		数据类型	数据范围	访问			
175	月/年	日期和时间; 首先	两个字节		R/W			
176	小时/天	读取寄存器175; 顺序高	两个字节		R/W			
177	秒/分钟	字节/低- 字节;	两个字节		R/W			
178	毫秒	将2000添加到年 (64位)	16 位二进制 数		R/W			
179-200		预留以备将	来使用					
		用户信息						
201-210	用户标识 #1	必须从低地址开始阅读;	ASCII字符串		R/W			
211-220	用户标识 #2	必须写低地址和高地址才 能保存字符串	ASCII字符串		R/W			
221-230	用户标识 #3	化体件子的甲	ASCII字符串		R/W			
231-255	预留以备将来使用							

7.2.3 氢气测量

The HY-OPTIMA™5000系列氢传感器在寄存器0-1中报告最新的氢**测量**。32位无符号整数值不被缩放,并且₂以ppm H报告氢的整数值。

注意: 读取寄存器111位15中的设备状态,以确定设备是否准备就绪。氢值为零,直 到设置就绪位。

7.2.4 温度测量

The HY-OPTIMA™5000系列氢传感器监测内部电子温度。温度报告为scaled16-bit无符号整数,单位为摄氏度。将整数值除以100并减去100将为测量温度提供2位小数。

7.2.4.1PCB温度

PCB温度在寄存器7中报告。这是电子外壳的内部温度,其不得超过105°C。

这是一个很好的寄存器,可以在安装和通信测试期间读取,因为该值始终有效并且经常更改。

7.2.5 ASCII字符串

HY-OPTIMA™5000系列氢传感器信息可作为ASCII串以零字节 (0x00) 终止。每个字符串最多可以有19个字符长,每个Modbus寄存器有2个字符。使用读保持寄存器功能,读取十个寄存器,每个字节为一个ASCII字符。

90000181 R0 Page 23 of 41

7.2.5.1 型号

型号在寄存器31-40中。

7.2.5.2 产品序列号

产品序列号在寄存器41-50中。

7.2.5.3 传感器序列号

传感器序列号在寄存器51-60中。

7.2.5.4 传感器板序列号

传感器板序列号在寄存器61-70中。

7.2.5.5 固件修订

固件版本在寄存器89-98中,使用格式x:y:z;示例3:5:A

- x是主要修订
- y是小修订
- z是产品指示符

7.2.6 日期寄存器格式

报告日期值的寄存器编码如下:

- 高字,高字节为月
- 高字,低字节为日
- 低字是年

7.2.6.1 制造日期

原始制造日期在寄存器81,82中

7.2.6.2 工厂校准日期

上次工厂校准日期在寄存器83,84中

7.2.7 状态和错误信息

The HY-OPTIMA™5000系列氢传感器为用户提供状态和错误信息,以确定其是否正常运行。

90000181 R0 Page 24 of 41

7.2.7.1 单位状态

单元状态信息在Modbus寄存器111中维护。该状态字的位图描述如下:

表15: 单位状态

	· · · · · · · · · · · · · · · · · · ·
位#	描述
15	装置准备就绪,氢读数有效
14	新的测量数据可用,寄存器读取后自动清除
13	未列出的位不使用,可能为0或1。
12	错误,表示不可恢复的错误 发生,请阅读Reg 112,113以获取更多 信息
0-11	未列出的位不使用,可能为0或1。

7.2.7.2 错误状态

当单元状态寄存器111的错误标志 (位12) 被设置时,32位寄存器112、13具有关于导致错误的原因的更多信息。位图如下所示。

表16: 错误状态

		* * * * * * * * * * * * * * * * * * * *
位#	十六进制值	描述
31	0x8000 0000	传感器-加热器故障
30	0x4000 0000	传感器-温度传感器故障
29	0x2000 0000	传感器-氢传感器故障
3-28	0x1000 0000- 0x0000 0008	未列出的位不使用,可能为0或1。
2	0x0000 0004	PCB温度大于105C
1	0x0000 0002	所需数据不可用
0	0x0000 0001	配置数据无效

7.2.8 设置单位ID

在寄存器150中报告或设置Modbus ID。读取此寄存器用于确认所选ID正在使用中。将期望的ID写入寄存器150将单元设置为指定的ID。设备ID的范围可以从1到247,或者由Modbus主控器限制。请注意,如果当前设备ID未知,则将所需的ID写入设备0会将ID广播到所有连接的HY-OPTIMA™5000系列设备。

准备多个单元共享公共RS485总线是通过一次将一个单元连接到Modbus控制器并为该单元写入期望的ID以在设备id0处注册150来完成的。

对于基于PC的配置,请使用<u>www.BaseBlock.com</u>的ComTest Pro作为Modbus控制器。必须对设备进行电源循环才能使新ID生效。建议每个设备都标有新的设备ID。

配置多个单元的简单过程如下:

90000181 R0 Page 25 of 41

- 1) 从RS485电缆上断开所有单元
- 2) 将第一个单元连接到RS485电缆
- 3) 使用Modbus控制器写入单个保持寄存器 (功能6) 来注册150,设备0,具有所连接单元的所需ID
- 4) 等待Modbus响应最多10秒
- 5) 断开本机并将下一个连接到RS485电缆
- 6) 重复步骤3、4和5,直到配置所有单元
- 7) 将所有单元连接到RS485电缆,并从每个配置的设备读取寄存器150

7.2.9 停止位选择

要选择在RS485通信端口设置中使用哪个停止位,请将1或2写入Modbus寄存器159 (默认选择为1)。**注意**:如果更改为2,则**可能**需要编写一个3来注册160 (波特率-19,200),并对HY-OPTIMA进行电源循环™5000系列氢传感器。

7.2.10 波特率

The HY-OPTIMA™5000系列氢传感器RS485波特率可以通过写入Modbus寄存器160从默认的 19,200波特率进行修改,该寄存器的数字对应于下表中所需的值。为了使新的波特率生效,必 须对设备进行功率循环。

衣17. 仮行卒				
编号	描述			
1	9,600波特			
2	14,400波特			
3	19,200波特			
4	38,400波特			
5	57,600波特			
6	115,200波特			

表17: 波特率

7.2.11 实时时钟

HY-OPTIMA™5000系列氢传感器具有内部实时时钟,由超级电容器提供备用电源。根据温度的不同,备用电源将在存储中持续几个月。在安装过程中,应将实时时钟设置为当前日期和时间。

要设置日期和时间,请先写入寄存器175、176、177,然后再写入178;写入寄存器178时保存时间。

要获取日期和时间,请读取寄存器175,176,177,然后178;读取寄存器175时捕获时间。

7.2.11.1 月/年

月份和年份在寄存器175中; 月份在高字节中, 年份 (从2000开始) 在低字节中。

90000181 R0 Page 26 of 41

7.2.11.2 小时/天

小时和日在寄存器176中;小时(24小时格式)在高字节中,日在低字节中。

7.2.11.3 秒/分钟

秒和分钟在寄存器177中; 秒在高字节中, 分钟在低字节中。

7.2.11.4 毫秒

毫秒在寄存器178中。

7.2.12 用户信息

The HY-OPTIMA™5000系列氢传感器提供三个ASCII字符串,用户可以对其进行编程以指示传感器的安装位置。每个字符串最多可以是20个字符,包括空终止。

7.2.12.1 用户标识#1

用户字符串 #1通过210保存在寄存器201中。

7.2.12.2 用户标识 #2

用户字符串 #2通过220保存在寄存器211中。

7.2.12.3 用户标识 #3

用户字符串 #3通过230保存在寄存器231中。

90000181 R0 Page 27 of 41

8 操作原则

8.1 压力的影响

The HY-OPTIMA™5000系列氢气传感器是氢气专用的,并且测量气流中只有氢气的分压。气体压力的变化将影响氢气分压,因此也会影响测量的输出。

示例: 在1.0绝对气氛下,50% H₂/N₂混合物将报告为50% 的分析仪。在1.1绝对大气压下,读数将增加到55%,而2.0绝对大气压将导致100% 的读数。一些模型,如HY-OPTIMA™5033和HY-OPTIMA™5034,可以测量多个大气压的氢气,并且高于100% 小时2的读数被解释为高于1.0绝对大气压的氢气压力。例如,2 150% H的读数是指1.5倍的氢气压力的100% H在1.0气氛绝对2浓度。

分析仪是工厂校准在1.0大气绝对。如果操作压力不同于1.0大气绝对压力但恒定,则可以在安装时执行2点场校准,以确保H 2读数提供正确的H 2体积浓度。(有关详细说明,请参阅第9节。)如果压力是已知的或通过压力传感器主动测量的,则使用下面的公式(1)可以计算出2的体积H浓度:

$$H_{2_{vol}} = \frac{H_{2}}{P_{ata}}$$

$$(1)$$

其中 P ata 是已知或测量的大气压绝对值,H 2 $_{read\ d}$ 是来自分析仪的H 2读数,假设分析仪在1.0大气压下使用工厂校准。重要的是要注意,压力测量中的任何误差将转化为H 2浓度测量中的误差。当分析仪测量高氢浓度时,这种效果尤其显著。例如,如果分析仪正在测量100% H在1.00大气压下的2 ,并且压力传感器用于主动补偿压力读数,但相对误差为1% (0.01大气压),然后分析仪将2 1% H的测量误差。

使用压力传感器主动补偿分析仪的氢读数以适应压力变化的另一个重要考虑因素是氢传感器和压力传感器之间的响应时间差异。通常,压力传感器可以非常快速地响应压力的变化。但是,氢传感器将具有以秒为单位测量的时间常数。如果在氢浓度保持恒定的情况下发生压力的阶跃变化,则压力补偿的氢测量将针对压力变化 (如压力传感器所示) 瞬时调整,但是氢传感器的实际氢响应将逐渐引入方程式。结果将是压力补偿氢测量中的错误瞬态,一旦氢传感器与气体恢复平衡,该瞬态将减小到零。通过使用低通滤波器人为地减少压力传感器的响应时间以匹配氢传感器的响应时间,可以部分地减轻这种影响,但是可能总是存在一些残余误差。

由于上述效果,强烈建议在分析仪处调节气流以使其具有稳定的操作压力和恒定的流量。此外, 甚至

90000181 R0 Page 28 of 41

如果系统设计为在1.0绝对大气压下运行,为了获得最佳测量精度 (特别是如果测量高氢浓度),则建议在安装时进行2点现场校准,以消除由于压力偏移较小而导致的任何测量误差。校准完成后,请将系统保持在该操作压力下,不要调整压力调节,以确保正常操作条件与现场校准条件尽可能接近。

8.2 压力标准化规格

由于传感元件对氢气的分压敏感,因此分析仪的操作压力会显着影响其测量精度。报告的氢以体积浓度给出,压力假定为恒定。第**3**节中列出的规格以**1**个绝对大气压下的体积浓度给出。

如第8.1节所述,体积浓度和分压之间存在简单的物理关系。可以认为在1个大气压下含有10%体积氢气的气体具有0.1个大气压的绝对氢气的分压,并且在2个大气压下10%个氢气的绝对氢气将对应于0.2个大气压的绝对氢气。(有关该主题的更多信息,请参阅道尔顿定律。)

下表以绝对气氛为单位描述了每种产品的规格。这些规格假定为干燥的工艺流,环境温度为**25**°C,并且除了所用校准气体中的任何错误之外。

农10. 分压恢附								
模型	H₂范围		检测下限 (LDL)	CO	H ₂ S			
	低	髙	` ′	(LDL) 限制	限制			
5031	0	0.1	0.0003	0.0001	0.00002			
5032	0	0.05	0.004	0	0			
5033	0	3	0.005	0.0001	0.001			
5034	0	3	0.005	0.2	0.03			

表18: 分压极限

单位: 绝对大气 (ata)

示例: ₂最多70% 小时和1% 小时₂ S的气体流可以通过HY-OPTIMA监控™在最多3个大气压下5034绝对。在该操作压力下,分析仪将看到高达2.1个大气压的H₂绝对值和0.03个大气压的H₂S,这两者都在上表中列出的限值内。但是,如果将工作压力提高到4个大气压,而₂的H分压仍在2.8个大气压的极限内,则H₂S将超过极限绝对0.04气氛。

测量的不确定度也必须随压力而定。第3节中列出的精度规格规格以最大误差作为绝对体积浓度的H 2给出。对于各种型号,这些精度规格将按氢范围进一步细分。但是,这是为了简单起见而完成的,并且仅适用于1个大气压的操作压力。不确定性通常可以在氢的全分压操作范围 (高于LDL)上扩展,如以下等式 (2) 所述。

90000181 R0 Page 29 of 41

$$\frac{K_{acc}^{2}}{W_{error}} = 100 \angle ((\sqrt{P_{H2}}_{ata} + \frac{K_{acc}^{2}}{P_{H2}_{ata}} - P_{H2}_{ata})$$

$$1000^{1}$$
(2)

其中,% $H_{2erroor}$ 是分析仪以 "% H_{2} " 为单位报告的最大预期体积氢浓度误差, $P_{H_{2ata}}$ 是在绝对大气压下的氢分压,而 acc 是模型特定的不确定性因子。该因子的值如下表所示:

模型 *K acc*5031 3.147
5032 * 7.694
5033 5.982
5034 5.982

表19: 不确定性因素

Example: A HY-OPTIMA™5033在工作压力为1大气压 ($P_{H2}_{ata} = 0.7$) 时的70% H₂,在测量中2预 计不确定度为 ± 1.0% H。如果操作压力升高至2个绝对大气压,则分析仪2将读取140% 小时。在 新的操作压力下执行2点场校准将使读数返回到2的70% H。但是,当 $P_{H2}_{ata} = 1.4$ 时,测量中的 预期不确定度现在为 ± 1.42% H₂。

8.3 传感器行为

H2scan提供了过程分析仪模型中使用的两种不同类型的传感器。包括传感器校准用于连续H 2曝光 (H测量应用2),以及传感器校准用于不常见的H 2曝光 (H 2检测应用)。

内部算法用于保持传感器的长期测量精度,并消除了对周期性场校准的需求。为了使此算法正常运行,必须连续打开分析仪的电源。如果分析仪仅在短时间内 (<2小时) 供电,则该算法将无法正常运行,并且传感器的精度可能不符合产品规格。

8.3.1 H₂测量

HY-OPTIMA中的传感器™模型5031,5033和5034设计用于连续H₂的曝光,即H测量应用₂。这些模型的标准测量范围0.5%为₂100%小时,按体积为5033和5034或0.1%为10%为模型5031。

因为这些传感器被设计成连续地看到H₂,如果它们在没有H的₂存在(或很少H₂的情况下)在含有氧气的气体中保持一段时间,通常,当O₂的浓度大于30倍H₂的浓度时),氧偏移将发生。暴露在传感器中的氧气越多,偏移就越快,越强。氧气偏移量因传感器而异。这种物理偏移不会出现在报告的H₂中,因为内部算法将消除影响,但是当传感器暴露于H时₂

90000181 R0 Page 30 of 41

^{*}在含有氧气和没有氢气的气流中操作的传感器在最初暴露于氢气时可能会遇到暂时的较高不确定性水平。有关更多信息,请参阅第8.3.2节。

在形成氧气偏移之后,可能会暂时降低精度并延迟响应时间。

降低气氛:即使是少量的 H_2 (例如1000ppm) 也应确保即使在含有氧气的气氛中 (在空气中测试,高达20% O_2) 也不会发生偏移。

较高的氧含量可能需要较大量的H2以防止氧化)。

如果氧气引起传感器的偏移,则可以通过用H 2吹扫传感器并允许算法有时间自动校正发生的任何偏移来反转。发生这种情况所需的时间取决于氧化偏移的大小,去除偏移的氢的浓度以及系统的稳定性。通常,在恒定的H 2浓度中两小时是足够的。较高的H 2浓度将更快地去除氧气偏移,但确保不超过给定模型的最大指定H 2浓度。例如,在1个大气压下暴露于形成气体 (2 5% H /95% N 2) 1小时将实现这一点,但是即使低浓度,例如1000ppm H 2 /99.9% N 2超过2小时也将起作用。

8.3.2 H 2 检测

HY-OPTIMA中的传感器™5032被设计用于一次₂少于几个小时的H暴露,例如,泄漏检测应用。虽然传感器能够在暴露₂连续H,但这样做可能导致在暴露₂开始连续H之后3至6小时的精度暂时降低。当H₂被暴露于该传感器这些延长的周期时,它将与氧气结合 (在传感器表面上),并且由传感器测量的H₂将小于H存在的₂。一旦在传感器上的O₂完全耗尽 (该过程可能需要几个小时,取决于H的₂浓度),内部的算法将校正测量,并允许传感器在连续H的₂中精确测量。然而,为了获得最佳测量精度,建议限制H暴露₂。

重要的是要注意,在传感器的大部分操作过程中,传感器应在不含氧气 (例如空气)的无氢环境中*通电*。如果传感器仅在氢测量期间通电,则其测量精度将降低。为了恢复测量精度,在不含氧气的氢环境中给传感器供电至少24小时,然后执行2点场校准。

8.3.2.1 非还原性和非氧化性气氛

如果传感器在几天或更长时间内处于不含氢和氧气的气体中保持通电,它将经历漂移。内部算法将确保报告的H₂保持在0。然而,当传感器最终暴露于氢时(高于检测下限),初始响应可能不准确。如果暴露于任何恒定的氢浓度(在模型范围内)至少4小时,内部算法将恢复准确性。

8.4 昼夜效应

温度变化在一天中可引起较小的变化H, 2分析器读数。如第8.1节压力影响, 传感器对氢的分压敏感, 这意味着压力变化 (由温度波动引起) 可以在报告的H 2浓度中产生较小的波动。尽管传感器对气体温度的波动不直接敏感, 但任何导致的压力波动都可能影响测量精度。

90000181 R0 Page 31 of 41

8.5 响应时间

在大多数情况下,传感器对氢变化的响应遵循典型的"s曲线",1阶系统响应。随着传感器芯片周围氢分压的变化与传感元件相互作用,其电特性立即发生变化。如果传感器没有被氧化,这种变化将在几秒钟内反映在分析仪的氢输出中。

对于传感器暴露于含氧且不含氢 (或小于~500ppm氢) 的气体中的应用,传感器表面会形成氧化层。在存在氢的情况下,该氧化物层将被迅速去除,但是在传感器开始显示对氢的响应之前,必须将其完全去除。该过程的持续时间取决于传感器在初始氢气暴露之前暴露于氧气的时间以及氢气浓度。

通常,传感器在含有氧气 (且不含氢气) 的气体中加电超过一周后被认为是完全氧化的。如前所述,去除该氧化物层以响应氢所花费的时间取决于氢浓度。假设操作压力约为1个大气压,暴露于2% 氢的完全氧化的传感器应在30秒内去除其氧化物层 (因此开始显示所报道的H 2的变化),并在60 秒内90% 过渡。然而,如果完全氧化的传感器暴露于0.4% 的氢,则氧化物层可能需要超过60秒才能完全去除并开始报告2的H增加。2 4% 小时的响应 (LEL) 将在短短几秒钟内去除氧化物层。

如果气体含有氧气,但含有少量的氢气,例如500ppm,这可能足以防止氧化物层的形成,并且将允许传感器更快地响应氢气的增加。

当快速响应时间至关重要或测量响应时间时,重要的是要了解传感器只能对传感器处的气体做出响应。从第一状态到5月2日的过渡在源头是瞬时的,但是在气体到达传感器之前总是有一些传输时间。

当考虑过渡期间系统中的气体混合物时,一般规则是每个标准体积周转将实现过渡的90%。例如,如果总系统体积 (包括管道) 是1标准升并且流速是1 slpm,则在过渡开始后1分钟,气体将被估计为包括10% 第一条件并且90% 第二条件。2分钟后,这变得1% 和99%,依此类推。传感器的氢气测量是*在传感器*的气体混合物的函数,因此最小化响应时间可以通过以下方式实现:

- 通过以下方式最小化源与传感器之间的标准气体体积:
 - o 使用小直径管道
 - o 最小化管道长度
 - o 在流动路径的早期将气体压力降低到 (或接近) 所需的工作压力

注: 推荐的工作压力为1个大气压。偏离此操作压力将影响分析仪的测量精度。参见第8.1节压力的影响。

• 增加体积气体流量

注意:在具有小直径管道,小直径管道弯曲,孔口尺寸变化等的系统中,高流速会影响压力或引起湍流。建议的流速为1 slpm,以限制这些影响。

最终用户应了解样品流调节的原理,并确定适合该应用的理想管道。传感器处的恒定,稳定的压力和层流,稳定的流量是理想的。

90000181 R0 Page 32 of 41

9 2点场校准

The HY-OPTIMA™5000系列氢传感器支持2点场校准。通过应用两个已知的气体浓度,传感器系统将计算并将增益和偏移应用于其测量值,以使其氢读数与已知的气体浓度相匹配。如果压力是恒定的,则可以将其用作一种方法,以在除1个大气压之外的压力下操作传感器时使氢读数标准化。更多方法请参见8.1压力影响

9.1 校准气体

警告: 请勿使用氢气浓度超过10% 的气体 为5031 1.0 atm 或为5032在1.0 atm 5%。

需要两种气体。建议使用主要标准 (± 0.02%) 公差。分析仪的给定精度规格不包括校准气体认证的误差,并且仅在每个气体至少60分钟的暴露时间下有效。

为了获得最佳结果,请使用刚好低于最低预期读数且刚好高于最高预期读数的校准气体浓度。例如,如果工艺流₂预期操作61% 和78% 小时 ,那么60% 和80% 小时的校准气体₂将是理想的。不必使用昂贵的定制混合物,只需使用任何容易在市场上买到的东西,请记住,校准气体的精度越好,校准的精度就越好。

	WEST OF THE	
模型	最小Cal气体	最大Cal气体
5031	0.03%	10%
5032	0.4%	5%
5033	0.5%	100%
5034	0.5%	100%

表20: 校准气体限值

注意: 上面列出的浓度假定1.0 atm绝对压力。

推荐的流速为1.0 ± 0.2 slpm。

对于模型5032,推荐气体在空气中1% H_2 ,在空气中2% H_2 。可从H2scan获得验证 /校准套件。

气体通过用户的管道施加到分析仪上。确保系统允许在正常操作期间以与分析仪相同的压力施加 校准气体。

9.2 背景气体

对于在具有惰性气体背景的氢气中操作的分析仪 (型号5031、5033、5034),以下背景气体是安全的:

- N₂
- 烃 (烷烃/烯烃/炔烃)
- CO₂
- •TA、Ar等。(贵族)

对于在空气或氧气中可能存在氢气的情况下操作的分析仪 (模型5032),可以使用空气背景或上面列出的背景中的氢气来执行校准。

90000181 R0 Page 33 of 41

9.3 现场校准程序

注:每个气体的暴露时间至少为每次暴露60分钟。短于60分钟的曝光会产生错误的校准数据。

需要两种校准氢气标准: 一种高,一种低。

请勿使用超过型号规定的H2浓度限值的气体,因为会损坏传感器(请参见表20)。

不要使用100% 空气,100% N₂,或任何具有H₂浓度低于产品模型的LDL的气体(参见表20。

注意: 校准可以随时中止(参见: 9.4中止现场校准)

表21: 2点场校准寄存器

注册	参数	函数	数据类型	数据范围	访问
126	校准气体1,ppm	高字	32位二进制	0到10,000,000	R/W
127	H ₂ *	低字	数	0到10,000,000	IX7 VV
128	校准完成/日期	高字节:月低字节: 日	32位二进制		R/W
129		年	值		
130	校准气体2,ppm	高字	32位二进制	0절140,000,000	R/W
131	H ₂ *	低字	数	0到10,000,000	Γλ / ۷۷
132	现场Cal启动命 令	气体暴露持续时间 (分钟)	16 位二进制 数	60至1440	W
133	现场校准中止命 令	中止字段Cal或清除数据	8位二进制数	1: 中止 2: 清除	W
134	现场呼叫获取状 态命令	高字节: 错误代码低字 节: 状态	16 位二进制 数	表 22 和 表 23	R
135	气体启动命令	气体1或2启动	8位二进制数	1: 气体1 2: 气体2	W

^{*}注: 要将%转换为ppm,请将%读数乘以10,000。

在每次写入现场校准寄存器之后,应从寄存器134中读取状态和错误代码。一旦开始校准,在寄存器写入后,状态代码应读取"1"(进行中),错误代码应读取"0"(未检测到错误),直到过程完成。完成后,状态代码应为"0"(成功),错误代码应为"0"(未检测到错误)。如果出现异常代码,请参考9.6校准状态和错误。

90000181 R0 Page 34 of 41

- 1. 通过写入每个气体暴露的持续时间 (以分钟为单位) 来记录**132**来启动校准 (最短时间为每气体**60**分钟,更长的时间最好长达**1440**分钟)。
- 2. 在1 slpm处将第一个气体施加到设备上。
- 3. 如有必要,调节传感器处的气体压力以匹配预期的工作压力。

注: 理想情况下,校准气体通过与测量气流相同的压力调节系统,不需要调节。

- 4. 通过将"1"写入寄存器135来指示第一气体正在流动。
- 5. 等待曝光时间。
- 6. **127**将以**ppm为单位**的第一气体浓度写入寄存器**126**。

提示: 将 % 转换为ppm,将 % 值乘以10000。

- 7. 在1 slpm处施加第二种气体。
- 8. 确保传感器处的气体压力没有变化,必要时进行任何调整。
- 9. 通过将"2"写入寄存器135来指示第二气体正在流动。
- 10. 等待曝光时间。
- 11. 131将以ppm为单位的第二气体浓度写入寄存器130。
- 12. 通过写入寄存器128, 129完成当前日期的现场校准。

注意: 如果输入的校准日期与设备中的当前日期不匹配,则现场校准不会完成。单位的当前日期可以在寄存器175,176中找到。格式化详情请参见表12。

13. 本机将自动重新启动。

9.4 中止现场校准

如果现场校准正在进行中但需要中止,则可以通过使单元功率循环或将 "1" 写入寄存器133来执行。

注册	参数	函数	数据类型	数据范围	访问
133	现场校准中止命 令	中止字段Cal或清除数据	8位二进制数	1: 中止 2: 清除	W

9.5 清除场校准

清除现场校准会删除活动现场校准。为了清除现场校准,写入"2"以注册133。

注意: 在没有主动场校准的情况下运行的分析仪将使用工厂校准来测量氢气。除非要 求进行特殊的工厂校准,否则应在1大气压的绝对工作压力下进行。如果

90000181 R0 Page 35 of 41

分析仪在任何其他压力下运行,氢气测量将需要补偿。参见8.1节压力影响

注册	参数	函数	数据类型	数据范围	访问
133	现场校准中止命 令	中止字段Cal或清除数据	8位二进制数	1: 中止 2: 清除	W

9.6 校准状态和错误

要查看校准状态和错误,请从寄存器134中读取。

注册	参数	函数	数据类型	数据范围	访问
134	现场呼叫获取状 态命令	高字节:错误代码低字 节:状态	16位二进制 数	表 22 和 表 23	R

表22: 现场校准状态

		· · · · · · · · · · · · · · · · · · ·
代码	描述	注释
0	成功	校准成功完成。
1	进行中	校准过程正在进行中。
2	失败	由于错误,校准停止。
3	中止	用户取消了校准。
4	清除	校准校正已被删除。
5	输入不良	最近的命令没有执行。有关更多详细信息,请参见错误代码。

90000181 R0 Page 36 of 41

表23: 现场校准误差

AD TEL	4444	(大)	
代码	描述	注释	
0	没有错误	未检测到错误	
	现场校准	给出了开始字段校准的命令,但是字段	
2	已经在进行中	校准已经在进行中。正在进行的现场校准必须首先中止。	
	了 点 层 块 見 電 时	输入的时间超出曝光时间限制。确保时间	
3	不良气体暴露时	在几分钟内输入并在产品的限制内 (至少60分钟,更好)。	
	间	, , , , , , , , , , , , , , , , , , ,	
4	<i>₽</i> , ₽, ₽, ₽, ₽	该单元存在内部问题; 电源循环并尝试	
4	定时器错误	再次。如果此问题仍然存在,请与H2scan联系。	
5	不适用	本代码仅用于诊断目的。	
		计算出的校准增益超出了限制。检查气体是否在流动,并且气体浓度以	
6	增益错误	ppm为单位输入	
		并匹配各自的气体。	
		输入的气体浓度超出产品的限制。确保气体浓度以ppm为单位,并在范围	
7	不良气体浓度	内	
		产品模型的。	
8		在气体1完成之前接收到启动气体2的命令。	
	71. (92	在完成两个校准点之前,已收到完成校准的命令。	
9	数据未就绪 在元成两个校准点之前,巨收到元成校准的命令。		
-	 计算	根据测量数据无法完成校准。	
10	1 月 失败	重试校准,如果错误仍然存在,请与H2scan联系。	
-			
	 校准日期不匹配	输入的日期必须与存储在单元中的日期相匹配。注意,存储在寄存器	
11	校准日期个匹能	175、176中的单元的日期与寄存器128、129中预期的格式不同。参见表12	
		详情。	
		计算的增益和/或偏移量超出限制。检查气体是否正在流动,并且气体浓	
12	 糟糕的结果	度以ppm为单位输入并匹配相应的气体。	
12	僧信的细术	及以 pp III/9平位相八开四间相应19(件。	
13		在校准过程中跳过了一个步骤。	
13	~1\(\tau_1\)	气体暴露尚未完成。一旦经过完全曝光时间,请重试该命令。如果输入	
14	暴露未完成	了不正确的气体暴露时间,则中止现场校准,然后重新开始。	
14		J 个工佣的 () P 茶路的 的,则 P 工	

90000181 R0 Page 37 of 41

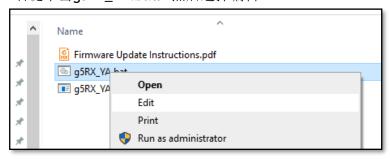
10 附录

10.1 固件升级

The HY-OPTIMA™5000系列氢传感器固件是现场可升级的。H2scan将根据需要提供说明和PC软件。

将固件升级文件复制到PC上的目录中。(注意:将提供最新的固件)

- g5RX_YA.exe -传感器固件二进制文件
- g5RX_YA.bat -批处理文件


示例: g5R3_5A.exe和g5R3_5A.bat 7步升

级固件:

1) 将以下文件复制到本地。

- 2) 连接HY-OPTIMA™5000系列氢传感器到您的PC使用USB到RS485适配器。
- 3) 右键单击g5RX_YA.bat, 然后选择编辑。

4) 您将在下面看到端口信息。更新您用来连接到HY-OPTIMA的com端口、设备地址和波特率 ™5000系列氢传感器。保存文件。

*g5RX_YA.bat - Notepad
File Edit Format View Help
g5RX_YA.exe com10 1 19200
pause

90000181 RO Page 38 of 41

5) 双击g5RX_YA.bat。固件升级时,您将看到以下信息。

```
C:\Users\jgoodheart\Desktop\Firmware\Gen5\3.5.A (hex -333A 353A 4100)>g5R3_5A.exe com4 1 19200

Gen5 SFU Utility Software Version 2.000
\\.\com4, baudrate = 19200, devID = 1, size=3ffc8, crc=f7a3
1. Open Serial Comm Port.
nothing read
2. Check if Gen5 is in Modbus or CLI mode.

*Gen5 is in Modbus mode.
3. Switching to CLI mode.

*FW=3:5:A, PORRST>
got prompt!
FW=3:5:A,4. Ready for code download. Begin.

*
*
*aaa 3ffc8 f7a3

*abb 8000 df7e

*abb 8000 df7e

*abb 8000 23c2
```

6) 当您看到下面的窗口时,升级过程就完成了。

```
abb 8000 e6f8
*abb 8000 8151
*abb 8000 8151
*abb 8000 85fd
*abb 7fc8 e0aa
...
*abb 7fc8 e0aa
6. Code download is done
*acc 3ffc8 f7a3
SUCCESS: final size = 0x3ffc8, crc = 0xf7a3
7. Close Serial Comm Port.
C:\Users\jgoodheart\Desktop\Firmware\Gen5\3.5.A (hex -333A 353A 4100)>pause
Press any key to continue . . . _
```

7) 要完成该过程,请循环HY-OPTIMA™5000系列氢传感器。

90000181 R0 Page 39 of 41

10.2 一般故障排除

如果分析器遇到问题,这里有一些一般问题需要回答。

- 1. 验证分析器上报H₂。
 - 检查所有连接和流动路径。
 - 降低过程或校准气流压力以1.0 atm并为分析仪供电。
- 2. 验证压力和流量是否稳定。
 - 不稳定的压力或流量会导致分析仪的行为不稳定。确保工艺气流得到适当调节。分析仪 对流量的变化不太敏感,但建议使用**1.0** slpm的流速。
- 3. 检查传感器输出的稳定性。
 - 将分析仪暴露于校准气体 (40-100% H_2 , 但不超过10% H_2 在模型5031或5% H_2 在模型5032) 过夜,同时记录 H_2 读数。
 - 绘制H₂读数。(您可以使用电子表格软件,如Microsoft Excel)。假设压力,温度和流速恒定,则最近数据的H 2线应该是平坦的,没有超出分析仪定义规范的扰动。如果尚未稳定,则将分析仪再暴露于校准气体中24小时或直到观察到稳定为止。
 - 一旦传感器稳定,执行2点场校准(见第9节)。
 - 如果传感器不稳定,请与H2scan联系以获得支持。
- 4. 传感器是否暴露于可能损坏它的物质中?
 - 暴露于液体,酸,碱或H₂S或CO含量超过产品限值会损坏传感器。
 - 暴露于H₂分压超过产品限值会损坏传感器。

90000181 R0 Page 40 of 41

如有任何疑问,请通过以下地址与我们联系:

H2scan公司总部: 27215 Turnberry Lane,

Unit A Valencia, CA 91355 US

邮箱: sales @ h2scan.com

www.h2scan.com

90000181 R0 Page 41 of 41